18 research outputs found

    A Framework for Synthetic Power System Dynamics

    Full text link
    Information on power grids is confidential and thus real data is often inaccessible. This necessitates the use of synthetic power grid models in research. So far the models used, for example, in machine learning had to be very simple and homogeneous to produce large ensembles of robust grids. We present a modular framework to generate synthetic power grids that considers the heterogeneity of real power grid dynamics but remains simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. We also include the major drivers of fluctuations on short-time scales. The synthetic grids generated are robust and show good synchronization under all evaluated scenarios, as should be expected for realistic power grids. This opens the door to future research that studies grids under severe stress due to extreme events which could lead to destabilization and black-outs. A software package that includes an efficient Julia implementation of the framework is released as a companion to the paper

    Spike Spectra for Recurrences

    Get PDF
    In recurrence analysis, the τ-recurrence rate encodes the periods of the cycles of the underlying high-dimensional time series. It, thus, plays a similar role to the autocorrelation for scalar time-series in encoding temporal correlations. However, its Fourier decomposition does not have a clean interpretation. Thus, there is no satisfactory analogue to the power spectrum in recurrence analysis. We introduce a novel method to decompose the τ-recurrence rate using an over-complete basis of Dirac combs together with sparsity regularization. We show that this decomposition, the inter-spike spectrum, naturally provides an analogue to the power spectrum for recurrence analysis in the sense that it reveals the dominant periodicities of the underlying time series. We show that the inter-spike spectrum correctly identifies patterns and transitions in the underlying system in a wide variety of examples and is robust to measurement noise.German Research FoundationPeer Reviewe

    Data-driven load profiles and the dynamics of residential electricity consumption

    Get PDF
    The dynamics of power consumption constitutes an essential building block for planning and operating sustainable energy systems. Whereas variations in the dynamics of renewable energy generation are reasonably well studied, a deeper understanding of the variations in consumption dynamics is still missing. Here, we analyse highly resolved residential electricity consumption data of Austrian, German and UK households and propose a generally applicable data-driven load model. Specifically, we disentangle the average demand profiles from the demand fluctuations based purely on time series data. We introduce a stochastic model to quantitatively capture the highly intermittent demand fluctuations. Thereby, we offer a better understanding of demand dynamics, in particular its fluctuations, and provide general tools for disentangling mean demand and fluctuations for any given system, going beyond the standard load profile (SLP). Our insights on the demand dynamics may support planning and operating future-compliant (micro) grids in maintaining supply-demand balance

    Non-standard power grid frequency statistics in Asia, Australia, and Europe

    Full text link
    The power-grid frequency reflects the balance between electricity supply and demand. Measuring the frequency and its variations allows monitoring of the power balance in the system and, thus, the grid stability. In addition, gaining insight into the characteristics of frequency variations and defining precise evaluation metrics for these variations enables accurate assessment of the performance of forecasts and synthetic models of the power-grid frequency. Previous work was limited to a few geographical regions and did not quantify the observed effects. In this contribution, we analyze and quantify the statistical and stochastic properties of self-recorded power-grid frequency data from various synchronous areas in Asia, Australia, and Europe at a resolution of one second. Revealing non-standard statistics of both empirical and synthetic frequency data, we effectively constrain the space of possible (stochastic) power-grid frequency models and share a range of analysis tools to benchmark any model or characterize empirical data. Furthermore, we emphasize the need to analyze data from a large range of synchronous areas to obtain generally applicable models.Comment: 7 pages; 7 figure

    Perspectives on adaptive dynamical systems

    Get PDF
    Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems like the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges, and give perspectives on future research directions, looking to inspire interdisciplinary approaches.Comment: 46 pages, 9 figure

    Perspectives on adaptive dynamical systems

    Get PDF
    Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches

    Moving the epidemic tipping point through topologically targeted social distancing

    Get PDF
    The epidemic threshold of a social system is the ratio of infection and recovery rate above which a disease spreading in it becomes an epidemic. In the absence of pharmaceutical interventions (i.e. vaccines), the only way to control a given disease is to move this threshold by non-pharmaceutical interventions like social distancing, past the epidemic threshold corresponding to the disease, thereby tipping the system from epidemic into a non-epidemic regime. Modeling the disease as a spreading process on a social graph, social distancing can be modeled by removing some of the graphs links. It has been conjectured that the largest eigenvalue of the adjacency matrix of the resulting graph corresponds to the systems epidemic threshold. Here we use a Markov chain Monte Carlo (MCMC) method to study those link removals that do well at reducing the largest eigenvalue of the adjacency matrix. The MCMC method generates samples from the relative canonical network ensemble with a defined expectation value of λmax\lambda_{max}. We call this the "well-controlling network ensemble" (WCNE) and compare its structure to randomly thinned networks with the same link density. We observe that networks in the WCNE tend to be more homogeneous in the degree distribution and use this insight to define two ad-hoc removal strategies, which also substantially reduce the largest eigenvalue. A targeted removal of 80\% of links can be as effective as a random removal of 90\%, leaving individuals with twice as many contacts

    Vibrational lifetimes of hydrated phospholipids

    No full text
    Large-scale ab initio molecular-dynamics simulations have been carried out to compute, at human-body temperature, the vibrational modes and lifetimes of pure and hydrated dipalmitoylphosphatidylcholine (DPPC) lipids. The projected atomic vibrations calculated from the spectral energy density are used to compute the vibrational modes and the lifetimes. All the normal modes of the pure and hydrated DPPC and their frequencies are identified. The computed lifetimes incorporate the full anharmonicity of the atomic interactions. The vibrational modes of the water molecules close to the head group of DPPC are active (possess large projected spectrum amplitudes) in the frequency range 0.5–55 THz, with a peak at 2.80 THz in the energy spectrum. The computed lifetimes for the high-frequency modes agree well with the recent data measured at room temperature where high-order phonon scattering is not negligible. The computed lifetimes of the low-frequency modes can be tested using the current experimental capabilities. Moreover, the approach may be applied to other lipids and biomolecules, in order to predict their vibrational dispersion relations, and to study the dynamics of vibrational energy transfer
    corecore